! ============================================================================= !> This submodule defines a steady Taylor-Couette flow in a cylindrical geometry !! where a fluid is confined between two (rotating) coaxial cylinders !! (without a magnetic field). !! !! This equilibrium is taken from !! _Gebhardt, Thomas and Grossman, Siegfried. !! "The Taylor-Couette eigenvalue problem with independently rotating cylinders.", !! Z. Phys. B 90, 475--490 (1993)_. !! !! @note Default values are given by !! !! - <tt>k2</tt> = 0 !! - <tt>k3</tt> = 1 !! - <tt>cte_rho0</tt> = 1 : density (constant) !! - <tt>alpha</tt> = 1 : rotational speed of the inner cylinder !! - <tt>beta</tt> = 2 : rotational speed of the outer cylinder !! and can all be changed in the parfile. @endnote ! SUBMODULE: smod_equil_taylor_couette submodule (mod_equilibrium) smod_equil_taylor_couette use mod_equilibrium_params, only: cte_rho0, alpha, beta implicit none real(dp) :: h, Rrat, A, B, Tstart real(dp) :: x_start, x_end contains module procedure taylor_couette_eq real(dp) :: Ta, grid_middle real(dp) :: viscosity_value call settings%physics%enable_flow() settings%grid%coaxial = .true. if (settings%equilibrium%use_defaults) then ! LCOV_EXCL_START call settings%grid%set_geometry("cylindrical") call settings%grid%set_grid_boundaries(1.0_dp, 2.0_dp) cte_rho0 = 1.0_dp alpha = 1.0_dp beta = 2.0_dp k2 = 0.0_dp k3 = 1.0_dp call settings%physics%enable_viscosity(viscosity_value=0.001_dp) end if ! LCOV_EXCL_STOP x_start = settings%grid%get_grid_start() x_end = settings%grid%get_grid_end() viscosity_value = settings%physics%viscosity%get_viscosity_value() h = x_end - x_start Rrat = x_start / x_end A = (alpha * Rrat**2 - beta) / (Rrat**2 - 1.0_dp) B = x_start**2 * (alpha - beta) / (1.0_dp - Rrat**2) Tstart = 0.5_dp * ( & (A * x_start)**2 + 4.0_dp * A * B * log(x_start) - (B / x_start)**2 & ) call background%set_density_funcs(rho0_func=rho0) call background%set_velocity_2_funcs(v02_func=v02, dv02_func=dv02, ddv02_func=ddv02) call background%set_temperature_funcs(T0_func=T0, dT0_func=dT0) grid_middle = 0.5_dp * (x_start + x_end) Ta = ( & cte_rho0 * v02(grid_middle) * h / viscosity_value & )**2 * 2.0_dp * h / (x_start + x_end) call logger%info('Taylor number is ' // str(int(Ta))) end procedure taylor_couette_eq real(dp) function rho0() rho0 = cte_rho0 end function rho0 real(dp) function T0(r) real(dp), intent(in) :: r if (Tstart > 0.0_dp) then T0 = 0.5_dp * ((A * r)**2 + 4.0_dp * A * B * log(r) - (B / r)**2) else T0 = 2.0_dp * abs(Tstart) + 0.5_dp * ( & (A * r)**2 + 4.0_dp * A * B * log(r) - (B / r)**2 & ) end if end function T0 real(dp) function dT0(r) real(dp), intent(in) :: r dT0 = v02(r)**2 / r end function dT0 real(dp) function v02(r) real(dp), intent(in) :: r v02 = A * r + B / r end function v02 real(dp) function dv02(r) real(dp), intent(in) :: r dv02 = A - B / r**2 end function dv02 real(dp) function ddv02(r) real(dp), intent(in) :: r ddv02 = 2.0_dp * B / r**3 end function ddv02 end submodule smod_equil_taylor_couette