This submodule defines a steady Taylor-Couette flow in a cylindrical geometry
where a fluid is confined between two (rotating) coaxial cylinders
(without a magnetic field).
This equilibrium is taken from
Gebhardt, Thomas and Grossman, Siegfried.
"The Taylor-Couette eigenvalue problem with independently rotating cylinders.",
Z. Phys. B 90, 475--490 (1993).
Note
Default values are given by
- k2 = 0
- k3 = 1
- cte_rho0 = 1 : density (constant)
- alpha = 1 : rotational speed of the inner cylinder
- beta = 2 : rotational speed of the outer cylinder
and can all be changed in the parfile.
Variables
Type | Visibility | Attributes | | Name | | Initial | |
real(kind=dp), |
private | | :: |
h | | | |
real(kind=dp), |
private | | :: |
Rrat | | | |
real(kind=dp), |
private | | :: |
A | | | |
real(kind=dp), |
private | | :: |
B | | | |
real(kind=dp), |
private | | :: |
Tstart | | | |
real(kind=dp), |
private | | :: |
x_start | | | |
real(kind=dp), |
private | | :: |
x_end | | | |
Functions
Arguments
None
Return Value real(kind=dp)
Arguments
Type | Intent | Optional | Attributes | | Name | |
real(kind=dp), |
intent(in) |
| | :: |
r | |
Return Value real(kind=dp)
Arguments
Type | Intent | Optional | Attributes | | Name | |
real(kind=dp), |
intent(in) |
| | :: |
r | |
Return Value real(kind=dp)
Arguments
Type | Intent | Optional | Attributes | | Name | |
real(kind=dp), |
intent(in) |
| | :: |
r | |
Return Value real(kind=dp)
Arguments
Type | Intent | Optional | Attributes | | Name | |
real(kind=dp), |
intent(in) |
| | :: |
r | |
Return Value real(kind=dp)
Arguments
Type | Intent | Optional | Attributes | | Name | |
real(kind=dp), |
intent(in) |
| | :: |
r | |
Return Value real(kind=dp)
Module Procedures
Arguments
Type | Intent | Optional | Attributes | | Name | |
type(settings_t), |
intent(inout) |
| | :: |
settings | |
type(grid_t), |
intent(inout) |
| | :: |
grid | |
type(background_t), |
intent(inout) |
| | :: |
background | |
type(physics_t), |
intent(inout) |
| | :: |
physics | |