! ============================================================================= !> This submodule defines a resistive equilibrium with tearing modes created !! by a Harris sheet. !! !! This equilibrium is taken from Shi et al. (2020), Oblique tearing mode !! instability: guide field and Hall effect. _The Astrophysical Journal_, 902:142. !! [DOI](https://doi.org/10.3847/1538-4357/abb6fa). !! @note Default values are given by !! !! - <tt>k2</tt> = 0.12 !! - <tt>k3</tt> = 0 !! - <tt>cte_rho0</tt> = 1 !! - <tt>cte_T0</tt> = 1 !! - <tt>cte_B02</tt> = 1 !! - <tt>cte_B03</tt> = 0 : guide field parameter. !! - <tt>alpha</tt> = 1 : used to set the width of the current sheet. !! - <tt>eq_bool</tt> = False : if True, an alternative force-free Harris sheet is used. !! !! and can all be changed in the parfile. @endnote submodule (mod_equilibrium) smod_equil_harris_sheet use mod_equilibrium_params, only: cte_rho0, cte_B02, cte_B03, cte_T0, alpha, eq_bool implicit none contains module procedure harris_sheet_eq if (settings%equilibrium%use_defaults) then call settings%grid%set_geometry("Cartesian") call settings%grid%set_grid_boundaries(-15.0_dp, 15.0_dp) call settings%physics%enable_resistivity(fixed_resistivity_value=0.001_dp) k2 = 0.12_dp k3 = 0.0_dp alpha = 1.0_dp cte_rho0 = 1.0_dp cte_B02 = 1.0_dp cte_B03 = 0.0_dp cte_T0 = 1.0_dp !> eq_bool >> if True, the alternative force-free Harris sheet is used eq_bool = .false. end if call background%set_density_funcs(rho0_func=rho0) call background%set_temperature_funcs(T0_func=T0, dT0_func=dT0) call background%set_magnetic_2_funcs(B02_func=B02, dB02_func=dB02, ddB02_func=ddB02) call background%set_magnetic_3_funcs(B03_func=B03, dB03_func=dB03, ddB03_func=ddB03) end procedure harris_sheet_eq real(dp) function rho0() rho0 = cte_rho0 end function rho0 real(dp) function T0(x) real(dp), intent(in) :: x if (eq_bool) then T0 = cte_T0 else T0 = (cte_B03**2 + cte_B02**2 - B0(x)**2) / (2.0_dp * cte_rho0) end if end function T0 real(dp) function dT0(x) real(dp), intent(in) :: x if (eq_bool) then dT0 = 0.0_dp else dT0 = -cte_B02**2 * sinh(x / alpha) / (alpha * cte_rho0 * cosh(x / alpha)**3) end if end function dT0 real(dp) function B02(x) real(dp), intent(in) :: x B02 = cte_B02 * tanh(x / alpha) end function B02 real(dp) function dB02(x) real(dp), intent(in) :: x dB02 = cte_B02 / (alpha * cosh(x / alpha)**2) end function dB02 real(dp) function ddB02(x) real(dp), intent(in) :: x ddB02 = - 2.0_dp * cte_B02 * sinh(x / alpha) / (alpha**2 * cosh(x / alpha)**3) end function ddB02 real(dp) function B03(x) real(dp), intent(in) :: x if (eq_bool) then B03 = sqrt(cte_B03**2 + cte_B02**2 / cosh(x / alpha)**2) else B03 = cte_B03 end if end function B03 real(dp) function dB03(x) real(dp), intent(in) :: x if (eq_bool) then dB03 = -cte_B02**2 * sinh(x / alpha) / (alpha * cosh(x / alpha)**3 * B03(x)) else dB03 = 0.0_dp end if end function dB03 real(dp) function ddB03(x) real(dp), intent(in) :: x if (eq_bool) then ddB03 = cte_B02**2 * ( & - 1.0_dp & + 2.0_dp * sinh(x / alpha)**2 & - cte_B02**2 * tanh(x / alpha)**2 & / (B03(x))**2 & ) / (alpha**2 * cosh(x / alpha)**4 * B03(x)) else ddB03 = 0.0_dp end if end function ddB03 real(dp) function B0(x) real(dp), intent(in) :: x B0 = sqrt(B02(x)**2 + B03(x)**2) end function B0 end submodule smod_equil_harris_sheet