mod_matrix_structure.f08 Source File


Contents


Source Code

! =============================================================================
!> Module that contains the datastructure for a linked-list matrix representation.
module mod_matrix_structure
  use mod_global_variables, only: dp
  use mod_logging, only: logger, str
  use mod_matrix_node, only: node_t
  use mod_matrix_row, only: row_t, new_row
  implicit none

  private

  !> General matrix type, represents the linked list implementation
  type, public :: matrix_t
    !> dimension of the matrix, number of rows
    integer :: matrix_dim
    !> array containing the various rows
    type(row_t), allocatable :: rows(:)
    !> label to distinguish between different matrix instances
    character(:), allocatable, private :: label

    contains

    procedure :: add_element
    procedure :: set_label
    procedure :: get_complex_element
    procedure :: get_total_nb_elements
    procedure :: get_label
    procedure :: get_nb_diagonals
    procedure :: copy
    procedure :: delete_matrix
  end type matrix_t

  public :: new_matrix

contains

  !> Constructor for a new matrix matrix with a given number of rows.
  !! Allocates and initialises the matrix datatype.
  pure function new_matrix(nb_rows, label) result(matrix)
    !> number of rows in the matrix
    integer, intent(in) :: nb_rows
    !> label of the matrix
    character(*), intent(in), optional :: label

    !> matrix datatype with rows/columns in a linked list
    type(matrix_t) :: matrix
    integer :: i

    matrix%matrix_dim = nb_rows
    allocate(matrix%rows(nb_rows))
    do i = 1, matrix%matrix_dim
      matrix%rows(i) = new_row()
    end do
    if (present(label)) then
      call matrix%set_label(label)
    else
      call matrix%set_label("")
    end if
  end function new_matrix


  !> Adds a given element at a certain (row, column) position to the matrix
  !! datastructure. Elements that are zero are not added, sanity checks are done
  !! on the row and column indices.
  subroutine add_element(this, row, column, element)
    !> type instance
    class(matrix_t), intent(inout) :: this
    !> row position of the element
    integer, intent(in) :: row
    !> column position of the element
    integer, intent(in) :: column
    !> polymorphic variable to add to the matrix
    class(*), intent(in) :: element

    if (.not. is_valid_element(element)) return
    if (.not. is_valid_index(this, row)) return
    if (.not. is_valid_index(this, column)) return

    call this%rows(row)%add_node(column, element)
  end subroutine add_element


  !> Sets the label of the current matrix.
  pure subroutine set_label(this, label)
    !> type instance
    class(matrix_t), intent(inout) :: this
    !> label to set
    character(len=*), intent(in) :: label

    this%label = label
  end subroutine set_label


  !> Checks if a given element is valid in order to add it to the matrix.
  !! Returns `.true.` if the element is of type real or complex, `.false.` otherwise.
  logical function is_valid_element(element) result(is_valid)
    use mod_check_values, only: is_zero

    !> Matrix element that is to be added
    class(*), intent(in) :: element

    is_valid = .false.
    select type(element)
      type is (real(dp))
        is_valid = (.not. is_zero(element))
      type is (complex(dp))
        is_valid = (.not. is_zero(element))
      type is (integer)
        is_valid = (element /= 0)
      class default
        call logger%error("adding unexpected element type")
    end select
  end function is_valid_element


  !> Checks if a given index is valid for the current matrix datastructure.
  !! Returns `.true.` if the index (either row or column) is larger than 0 and
  !! smaller than the dimension of the matrix. Returns `.false.` otherwise.
  logical function is_valid_index(matrix, index) result(is_valid)
    !> matrix datastructure object
    type(matrix_t), intent(in) :: matrix
    !> index to check
    integer, intent(in) :: index

    is_valid = .true.
    if (index <= 0 .or. index > matrix%matrix_dim) then
      call logger%error( &
        "row/column index " // str(index) // " is outside of matrix dimension" &
      )
      is_valid = .false.
    end if
  end function is_valid_index


  !> Returns the complex element associated with the linked-list node at position
  !! (row, column) in the matrix datastructure. Non-existing nodes correspond to zero
  !! values, so when a node at (row, column) is not foudn this function returns
  !! (complex) zero.
  function get_complex_element(this, row, column) result(element)
    !> type instance
    class(matrix_t), intent(in) :: this
    !> row position of the needed element
    integer, intent(in) :: row
    !> column position of the needed element
    integer, intent(in) :: column
    !> the element at position (row, column) in the matrix
    complex(dp) :: element
    type(node_t), pointer :: node

    element = (0.0d0, 0.0d0)
    node => this%rows(row)%get_node(column=column)
    if (associated(node)) element = node%get_node_element()
    nullify(node)
  end function get_complex_element


  !> Returns the total number of elements (nodes) across the various rows.
  pure function get_total_nb_elements(this) result(total_nb_elements)
    !> type instance
    class(matrix_t), intent(in) :: this
    !> total number of (non-zero) elements in this matrix
    integer :: total_nb_elements
    integer :: i

    total_nb_elements = 0
    do i = 1, this%matrix_dim
      total_nb_elements = total_nb_elements + this%rows(i)%nb_elements
    end do
  end function get_total_nb_elements


  !> Returns the current label.
  pure function get_label(this) result(label)
    !> type instance
    class(matrix_t), intent(in) :: this
    !> current matrix label
    character(len(this%label)) :: label

    label = this%label
  end function get_label


  !> Subroutine to get the number of super- and sub-diagonals in the matrix.
  subroutine get_nb_diagonals(this, ku, kl)
    !> type instance
    class(matrix_t), intent(in) :: this
    !> number of superdiagonals
    integer, intent(out) :: ku
    !> number of subdiagonals
    integer, intent(out) :: kl
    type(node_t), pointer :: current_node
    integer :: irow, inode

    ku = 0
    kl = 0
    do irow = 1, this%matrix_dim
      current_node => this%rows(irow)%head
      do inode = 1, this%rows(irow)%nb_elements
        ku = max(ku, current_node%column - irow)
        kl = max(kl, irow - current_node%column)
        current_node => current_node%next
      end do
    end do
    nullify(current_node)
  end subroutine get_nb_diagonals


  !> Dedicated function to copy a matrix structure into a new matrix structure.
  !! The datastructure contains pointers, such that simply setting
  !! matrix1 = matrix2 may result in pointer target losses (and wrong results).
  !! @note We should not overload the generic assignment(=) with this function,
  !! as it may clash with the constructor. @endnote
  function copy(matrix_in) result(matrix_out)
    !> the original matrix
    class(matrix_t), intent(in) :: matrix_in
    !> copy from the original matrix
    type(matrix_t) :: matrix_out
    type(node_t), pointer :: current_node
    integer :: irow, inode

    matrix_out = new_matrix(nb_rows=matrix_in%matrix_dim)
    do irow = 1, matrix_in%matrix_dim
      current_node => matrix_in%rows(irow)%head
      do inode = 1, matrix_in%rows(irow)%nb_elements
        call matrix_out%add_element( &
          row=irow, &
          column=current_node%column, &
          element=current_node%get_node_element() &
        )
        current_node => current_node%next
      end do
    end do
  end function copy


  !> Deallocates the matrix datastructure, nullifies all corresponding pointers and
  !! deallocates the various nodes in the rows.
  pure subroutine delete_matrix(this)
    class(matrix_t), intent(inout) :: this
    integer :: i

    if (.not. allocated(this%rows)) return
    do i = 1, this%matrix_dim
      call this%rows(i)%delete_row()
    end do
    deallocate(this%rows)
  end subroutine delete_matrix

end module mod_matrix_structure