mod_banded_matrix.f08 Source File


Contents

Source Code


Source Code

!> Contains types and routines to handle banded matrices. We use the same conventions
!! as explained in the LAPACK guide http://www.netlib.org/lapack/lug/node124.html.
module mod_banded_matrix
  use mod_global_variables, only: dp
  use mod_logging, only: logger, str
  implicit none

  private

  !> type to represent a complex banded matrix
  type, public :: banded_matrix_t
    !> number of rows
    integer :: m
    !> number of columns
    integer :: n
    !> number of subdiagonals
    integer :: kl
    !> number of superdiagonals
    integer :: ku
    !> array containing the banded storage
    complex(dp), allocatable :: AB(:, :)

    contains

    procedure, public :: get_element
    procedure, public :: set_element
    procedure, public :: get_total_nb_elements
    procedure, public :: get_total_nb_nonzero_elements
    procedure, public :: is_compatible_with
    procedure, public :: destroy
  end type banded_matrix_t

  public :: new_banded_matrix

contains

  !> Constructor for a new banded matrix with a given number of rows, columns,
  !! subdiagonals and superdiagonals. Allocates and initialises the datatype.
  function new_banded_matrix(rows, cols, subdiags, superdiags) result(matrix)
    !> number of rows
    integer, intent(in) :: rows
    !> number of columns
    integer, intent(in) :: cols
    !> number of subdiagonals
    integer, intent(in) :: subdiags
    !> number of superdiagonals
    integer, intent(in) :: superdiags
    !> banded matrix datatype
    type(banded_matrix_t) :: matrix

    if (.not. dimensions_are_valid(rows, cols)) then
      call logger%error( &
        "banded matrix creation failed, expected a square matrix but got " &
        // str(rows) // " x " // str(cols) &
      )
      return
    end if

    matrix%m = rows
    matrix%n = cols
    matrix%kl = subdiags
    matrix%ku = superdiags
    allocate(matrix%AB(subdiags + superdiags + 1, cols))
    ! initialise all to zero
    matrix%AB = (0.0d0, 0.0d0)
  end function new_banded_matrix


  !> Retrieves the element at position (row, col) of the original matrix.
  !! See the LAPACK documentation, element $a_{ij}$ of the original matrix is stored
  !! at position $(ku + 1 + i - j, j)$ (with $ku$ the number of superdiagonals).
  pure function get_element(this, row, col) result(element)
    !> type instance
    class(banded_matrix_t), intent(in) :: this
    !> the row index of the original position
    integer, intent(in) :: row
    !> the column index of the original position
    integer, intent(in) :: col
    !> the element at original position (row, col)
    complex(dp) :: element

    if (is_within_band(matrix=this, row=row, col=col)) then
      element = this%AB(this%ku + 1 + row - col, col)
    else
      element = (0.0d0, 0.0d0)
    end if
  end function get_element


  !> Sets the element $a_{ij}$ of the original array into the banded structure.
  !! The <tt>row</tt> and <tt>col</tt> arguments refer to the row and column indices
  !! of the element in the original array. This routine has no effect if the location
  !! falls outside of the banded structure.
  pure subroutine set_element(this, row, col, element)
    !> type instance
    class(banded_matrix_t), intent(inout) :: this
    !> row index of element
    integer, intent(in) :: row
    !> column index of element
    integer, intent(in) :: col
    !> value for the element at (row, col)
    complex(dp), intent(in) :: element

    if (.not. is_within_band(matrix=this, row=row, col=col)) return
    this%AB(this%ku + 1 + row - col, col) = element
  end subroutine set_element


  !> Destructor, deallocates the datastructure.
  pure subroutine destroy(this)
    !> type instance
    class(banded_matrix_t), intent(inout) :: this

    if (allocated(this%AB)) deallocate(this%AB)
  end subroutine destroy


  !> Returns the total number of elements inside the banded matrix.
  pure integer function get_total_nb_elements(this)
    !> type instance
    class(banded_matrix_t), intent(in) :: this
    integer :: i

    ! N elements on diagonal (matrix is assumed square)
    get_total_nb_elements = this%m
    ! superdiagonals, every next one has 1 element less than previous one
    do i = 1, this%ku
      get_total_nb_elements = get_total_nb_elements + (this%m - i)
    end do
    ! subdiagonals, same as superdiagonals
    do i = 1, this%kl
      get_total_nb_elements = get_total_nb_elements + (this%m - i)
    end do
  end function get_total_nb_elements


  !> Returns the total number of nonzero elements inside the banded matrix.
  pure integer function get_total_nb_nonzero_elements(this)
    use mod_check_values, only: is_zero

    !> type instance
    class(banded_matrix_t), intent(in) :: this

    get_total_nb_nonzero_elements = count(.not. is_zero(this%AB))
  end function get_total_nb_nonzero_elements


  !> Checks if a given position (row, col) is within the banded structure, i.e.
  !! $$ max(1, col - ku) \leq row \leq min(m, col + kl) $$
  !! with $ku$ the number of superdiagonals and $kl$ the number of subdiagonals.
  pure logical function is_within_band(matrix, row, col)
    !> the banded matrix structure
    type(banded_matrix_t), intent(in) :: matrix
    !> row index
    integer, intent(in) :: row
    !> column index
    integer, intent(in) :: col

    is_within_band = ( &
      max(1, col - matrix%ku) <= row .and. row <= min(matrix%m, col + matrix%kl) &
    )
  end function is_within_band


  !> Checks if a banded matrix is compatibe with another banded matrix.
  !! This implies that the following attributes should be equal:
  !!   - dimensions of the original matrices
  !!   - number of superdiagonals and subdiagonals
  !!   - dimensions of the banded matrices themselves
  !! Returns `.true.` if these three criteria are satisfied, `.false.` otherwise.
  pure logical function is_compatible_with(this, other)
    !> type instance
    class(banded_matrix_t), intent(in) :: this
    !> other banded matrix
    type(banded_matrix_t), intent(in) :: other

    is_compatible_with = ( &
      this%m == other%m &
      .and. this%n == other%n &
      .and. this%kl == other%kl &
      .and. this%ku == other%ku &
      .and. all(shape(this%AB) == shape(other%AB)) &
    )
  end function is_compatible_with


  !> Checks if the given matrix dimensions are valid. For now, we only accept
  !! square matrices. Returns `.true.` if `rows` equals `cols`, `.false.` otherwise.
  pure logical function dimensions_are_valid(rows, cols)
    !> number of rows in the original matrix
    integer, intent(in) :: rows
    !> number of columns in the original matrix
    integer, intent(in) :: cols

    dimensions_are_valid = (rows == cols)
  end function dimensions_are_valid


end module mod_banded_matrix