from __future__ import annotations
from typing import Union
import numpy as np
from matplotlib import animation
from matplotlib.cm import ScalarMappable
from pylbo.utilities.toolbox import transform_to_list
from pylbo.visualisation.modes.mode_data import ModeVisualisationData
from pylbo.visualisation.modes.mode_figure import ModeFigure
from pylbo.visualisation.utils import add_axis_label
from tqdm import tqdm
[docs]class CartesianSlicePlot2D(ModeFigure):
"""
Class for handling Cartesian 2D plots of the eigenmode solutions.
Parameters
----------
data : ModeVisualisationData
The data for the visualisation.
u2 : float or ndarray
The :math:`y` coordinate of the eigenmode solution.
u3 : float or ndarray
The :math:`z` coordinate of the eigenmode solution.
time : float
The time at which the eigenmode solution is calculated.
slicing_axis : str
The axis along which the eigenmode solution is sliced.
figsize : tuple[int, int]
The size of the figure.
show_ef_panel: bool
Whether to show the eigenfunction panel.
**kwargs
Additional keyword arguments to be passed to :meth:`matplotlib.pyplot.imshow`.
"""
def __init__(
self,
data: ModeVisualisationData,
u2: Union[float, np.ndarray],
u3: Union[float, np.ndarray],
time: float,
slicing_axis: str,
figsize: tuple[int, int],
show_ef_panel: bool,
**kwargs,
) -> None:
for i in "123":
_axis = getattr(data.ds, f"u{i}_str")
setattr(self, f"_u{i}axis", _axis.replace("$", "").replace("\\", ""))
self.slicing_axis = self._validate_slicing_axis(
slicing_axis, allowed_axes=[self._u2axis, self._u3axis]
)
self.update_colorbar = True
self._u1 = data.ds.ef_grid
self._u2 = self._validate_u2(u2, slicing_axis, axis=self._u2axis)
self._u3 = self._validate_u3(u3, slicing_axis, axis=self._u3axis)
self._time = self._check_if_number(time, "time")
self._kwargs = kwargs
self._use_contour_plot = False
self._contour_levels = None
self._contour_recipe = None
super().__init__(figsize, data, show_ef_panel)
self.vmin = np.min(self._solutions)
self.vmax = np.max(self._solutions)
[docs] def _validate_slicing_axis(self, slicing_axis: str, allowed_axes: list[str]) -> str:
"""
Validates the slicing axis.
Parameters
----------
slicing_axis : str
The slicing axis.
allowed_axes : list[str]
The list of allowed axes.
Returns
-------
str
The validated slicing axis.
"""
if slicing_axis not in allowed_axes:
raise ValueError(f"Slicing axis must be one of {allowed_axes}.")
return slicing_axis
[docs] def _validate_u2(self, u2: float, slicing_axis: str, axis: str) -> float:
"""
Validates the combination of u2 and slicing axis.
Parameters
----------
u2 : float
The :math:`u_2` coordinate.
slicing_axis : str
The slicing axis.
axis : str
The coordinate axis corresponding to :math:`u_2`.
Returns
-------
float
The validated :math:`u_2` coordinate.
"""
if slicing_axis == axis and not isinstance(u2, (int, np.integer, float)):
raise ValueError(f"u2 must be a number for slicing axis '{axis}'.")
return u2
[docs] def _validate_u3(self, u3: float, slicing_axis: str, axis: str) -> float:
"""
Validates the combination of u3 and slicing axis.
Parameters
----------
u3 : float
The :math:`u_3` coordinate.
slicining_axis : str
The slicing axis.
axis : str
The coordinate axis corresponding to :math:`u_3`.
Returns
-------
float
The validated :math:`u_3` coordinate.
"""
if slicing_axis == axis and not isinstance(u3, (int, np.integer, float)):
raise ValueError(f"u3 must be a number for slicing axis '{axis}'.")
return u3
[docs] def set_plot_arrays(self) -> None:
axis = self.slicing_axis
coord = self._u2 if axis == self._u3axis else self._u3
self.solution_shape = (len(self._u1), len(coord))
for ef, omega in zip(self.data.eigenfunction, self.data.omega):
data = np.broadcast_to(ef, shape=reversed(self.solution_shape)).transpose()
self.ef_data.append({"ef": data, "omega": omega})
x_2d, coord_2d = np.meshgrid(self.data.ds.ef_grid, coord, indexing="ij")
self.u1_data = x_2d
self.u2_data = coord_2d if axis == self._u3axis else self._u2
self.u3_data = coord_2d if axis == self._u2axis else self._u3
self.time_data = self._time
[docs] def add_u2u3_txt(self, ax, **kwargs) -> None:
if self.slicing_axis == self._u3axis:
txt = rf"{self.data.ds.u3_str} = {self._u3}"
else:
txt = rf"{self.data.ds.u2_str} = {self._u2}"
txt = rf"{txt} | t = {self._time:.2f}"
self.u2u3_txt = add_axis_label(ax, txt, **kwargs)
[docs] def set_contours(self, levels=None, fill=False) -> None:
"""
Sets up a contour plot instead of an image plot.
Parameters
----------
levels : int or list[float]
The number of levels or the list of levels.
fill : bool
Whether to fill the contour plot.
"""
self._use_contour_plot = True
self._contour_levels = levels
self._contour_recipe = self.ax.contour if fill is False else self.ax.contourf
[docs] def draw_solution(self) -> None:
if self._use_contour_plot:
self._draw_contours()
else:
self._draw_image()
[docs] def _draw_image(self) -> None:
vertical = self.u2_data if self.slicing_axis == self._u3axis else self.u3_data
self._view = self.ax.pcolormesh(
self.u1_data,
vertical,
self.solutions,
**self._kwargs,
)
self.cbar = self.fig.colorbar(
ScalarMappable(norm=self._view.norm, cmap=self._view.cmap), cax=self.cbar_ax
)
[docs] def _draw_contours(self) -> None:
vertical = self.u2_data if self.slicing_axis == self._u3axis else self.u3_data
additional_kwargs = {}
if self._contour_levels is not None:
additional_kwargs["levels"] = self._contour_levels
self._view = self._contour_recipe(
self.u1_data,
vertical,
self.solutions,
vmin=self.vmin,
vmax=self.vmax,
**additional_kwargs,
**self._kwargs,
)
self.cbar = self.fig.colorbar(
ScalarMappable(norm=self._view.norm, cmap=self._view.cmap), cax=self.cbar_ax
)
[docs] def get_view_ylabel(self) -> str:
return (
self.data.ds.u2_str
if self.slicing_axis == self._u3axis
else self.data.ds.u3_str
)
[docs] def create_animation(
self, times: np.ndarray, filename: str, fps: float = 10, dpi: int = 200
) -> None:
writer = animation.FFMpegWriter(fps=fps)
pbar = tqdm(total=len(times), unit="frames", desc=f"Creating '{filename}'")
self.data._print_bg_info = False
self._ensure_first_frame_is_drawn()
initial_solution = self._solutions
with writer.saving(self.fig, filename, dpi=dpi):
for t in times:
solution = 0
for efdata in self.ef_data:
solution += self.calculate_mode_solution(
efdata, self.u2_data, self.u3_data, t
)
if self.data.add_background:
solution += self.data.get_background(shape=self._solutions.shape)
self._update_view(updated_solution=solution)
if self.update_colorbar:
self._update_view_clims(solution)
else:
self._update_view_clims(initial_solution)
self._set_t_txt(t)
writer.grab_frame()
pbar.update()
self._solutions = initial_solution
[docs] def _ensure_first_frame_is_drawn(self) -> None:
if None in transform_to_list(self._view):
self.draw()
[docs] def _set_t_txt(self, t):
if self.u2u3_txt is None:
return
txt = self.u2u3_txt.get_text().split("|")[0]
self.u2u3_txt.set_text(f"{txt}| t = {t:.2f}")
[docs] def _update_view(self, updated_solution: np.ndarray) -> None:
"""
Updates the axes with the new solution. If a contour plot is used, the
contour lines are cleared and redrawn. If an image plot is used, the image is
updated.
Parameters
----------
updated_solution : np.ndarray
The new solution.
"""
if self._use_contour_plot:
self._update_contour_plot(updated_solution)
else:
self._view.set_array(updated_solution.ravel())
[docs] def _update_view_clims(self, solution: np.ndarray) -> None:
self.vmin, self.vmax = np.min(solution), np.max(solution)
self._view.set_clim(self.vmin, self.vmax)
[docs] def _clear_contours(self):
# sadly contour(f) does not support updating the data, so we have to
# delete the old contours and create new ones every frame...
for coll in self._view.collections:
try:
coll.remove()
except ValueError:
pass
[docs] def _update_contour_plot(self, updated_solution: np.ndarray) -> None:
self._clear_contours()
self._solutions = updated_solution
self.draw_solution()
self.add_axes_labels()